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BALLISTIC RESEARCH LABORATORIE

THE PENNSYLVANIA STATE UNIVEPSITY

PROJECT NO: DA-36-034-ORD-3576-RD

Progressing Wave Analysis of Blast Waves in Spheres

Report No. 1

ABSTRACT

A theory of crater formation by impact awaits better understanding

of the process of shock-wave propagation in solid-, especially waves with

spherical symetry. This paper studies theoretically and experimentally

the non-steady motion of metallic spheres initiated by explosive blast in

a spherical cavity. The method of progressing waves is applied to deter-

mine the radius versus time diagram of the prope-tion of the wave into

the material and leads to values for cavity sizes. The assumptions are

made that the material in the vicinity of the cavity possesses a poly-

tropic equation of state, that entropy is constant for an element of mater-

ial, and that the total energy is constant in zime. The original partial

differential equations of the problem are then reducible to a succession

of ordinary differential equations. Using the Rankine-Hugoniot relations

as initial conditions at the shock front, these equations have been inte-

grated using a numerical program developed for a number of metals and the

construction of rt-diagrams carried out with values for particle veloci-

ties and pressure variation on the inner surface. The solutions of the

differential equation of progressing waves have been studied by construct-

ing a solution diagram, which is similar to a hodograph plane. An analysis

was made of this plane and the role played by the singularities of the

differential equation. The appropriate solution curve starts very close
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to a positive node of the equation, then approaches very close to a saddle-

type singularity in a corner of the plane which has been found to represent

a meaningful physical boundary condition, namely that pressure and velocity

tend asymptotically to zero with increasing time in the proper manner.

Using an equation of state for aluminum (obtained from data from Los

Alamos publications) there is obtained the expansion of a cavity of 1.7 cm

radius in a thick aluminum sphere, filled with 31.6 grams of Pentolite, to

its final measured value of 3.0 am. The initial pressure, which is of the

order of 300 kilobars, drops to less than 100 kb in less than 2 microsec-

onds. At this time the shock velocity drops to its acoustic or elastic

value in the material. However, the cavity continues to expand to its final

stage in a time of 80 microsec. The simultaneous drop of pressure, velocity,

and departure of the medium from the polytropic equation of state signals the

termination of the shock regime This appears as a triangular region on the

r,t-diagram, bounded by the shock front, the inner cavity, and the line t = 2

microsec Beyond this time the material of the zone continues to flow radially

outwards essentially as an incompressible fluid.

The assumption that metals behave similar to gases as a result of an ex-

plosion or impaft, is limited to this shock zone, which is shorter in duration

than may have been expeited From the known outward displacements of the out-

er radius of the sphere I 1 inch) the increase in cavity volume is account-

ed for geometrically

A similar time scale of events may be expected to take place in an im-

pact crater, that is, the shock wave regime should be terminated essentially

before the flow of material both radial and tangential, has started.

The Ballistic Research Laboratory, Aberdeen Proving Grounds, is conduct-

ing a parallel experimental program on thick aluminum spheres and have fur-

nished data needed for this analysis
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LIST OF SYMBOLS

p, P pressure

P density

PO initial density

t time

r radius

u radial "particle" velocity

c sound velocity

V volume

V0  initial volume

7 adiabatic exponent

A constant in polytropic gas relation

CC, , , progressing wave exponents

t rt "- progressing wave parameter

U, D, P progressing wave functions

A = (U -a)2 _ yp

N, Q, R, S functions of U, see (4.8b)

A.L = v - l)('y + 1)

E energy

kb kilobars

s arc length

C shock wave velocity
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1. INTRODUCTION - Description of the Problem

The Ballistic Research Laboratory (BRL), Aberdeen Proving Grounds,

is engaged in conducting an experimental program of internal explosions

in small cavities In metal spheres. The aim of this report is to give

the results of an analytical study of the problem, with particular em-

phasis on the propagation of shock waves in the metal immediately after

detonation of the explopive.

Figs. 1 and 2 show a 7 inch sphere of aluminum such as has been used

to date In BRL experiments. The phenomena, and hence their analysis,

which result from detonation of the explosive in the inner cavity, are

complex because different effects predominate in different parts of the

material. Thus, there is an innermost zone or spherical shell where very

large radial displacements have occurred under temperatures and pressures

far beyond the range of conventional mechanical behavior. The material

is in some type of "fluid" state in this zone and shows relatively little

tendency for cracks to Initlate there. Next, there is an intermediate

zone of the sphere where displacements have dropped to elastic ranges and

where brittleness seems to have retuirned, as evidenced by the many small

tension and shear cracks which have formed there. A few of the stronger

cracks which get started may penetrate Into the adjacent regions and ulti-

mately reach the boundaries Finally, there is an outermost zone dominat-

ed by the effect of the external boundary of the sphere. Here reflection

effects such as scabbing cracks are often observed.

The transition between successive zones are not exact, but in some

specimens, rather surprisingly enough, are fairly sharply delineated.

In this report we shall make an analysis of the Innermost shock zone.

Its direct alio is to provide a description of the shock process in the
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metal. More specifically a useful theory must furnish a time for the

duration of the process, the size of the zone influenced by the shock

front, values for the displacements, and thermodynamic variables of pres-

sure, density, and temperature in the material. A useful tool is the r,t-

diagram which shows the path made by a set of concentric spherical shells.

This diagram is possible because of the single space coordinate.

The problem of the shock expansion of spherical cavities is closely

related to that of crater formation by hypervelocity projectiles. The

features we have outlined above are present in the crater problem as well.

The crater problem carries with it, however, the further complication of

tangential flow, thus requiring two space coordinates. Except for the

presence of the plug shown in Figs. 1 and 2, the arrangement for the

blasts have spherical symmetry, and we may confidently assert that radial

otion occurs, so that all the physical quantities of the problem depend

on only one space coordinate. There is however, a slight actual departure

because of the plug or because of asymmetrical detonation, and which are

not important to the problem.

2. Spherical Shocks - Time Sequence of Effects

Just as the study of the problem has been conveniently divided up in-

to spatial zones, we can divide up the sequence of events in the spherical

blast process for detailed analysis as follows:

a) Initial Stage - Here the detonation wave of the exploding gas

starts contact with the solid and then generates a shock wave in the solid.

This stage might be considered as terminated when the density in the solid

has dropped to its free space value, at the inner cavity.

b) Expanion Stage - The compressed solid expands radially outward

and actually forms the cavity. This stage is dominated mostly by inertia

forces.
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c) Final St 2ge -. Here the shock wave decays, permanent deformation

of the cavity stops., ind the material has undergone some permanent plastic

strain.

The first stage lasts -up to about .25 micro-seconds. The second

turns out to be relatively long and can take up to about 100 microseconds

or even longer. It must., of course, be understood that these phases need

not be distinctly separated events in time, especially the terminating

phase of the expansion.

3. Basic Mathematical Fua-ions of Shock Waves

Because of spherical symmetry our problem is reducible to a radial

and a time coordinate. Shock wave propagation in a solid is very closely

related to that of a spherical wave in a gas. We may make the following

assumptions about the medium,

1. Thermodynaml., equilibrium holds (See [2), p 3), ie. that changes

of state are adiabatc By this we mean that entropy is constant along a

"particle path", i.e , a fixed element of the medium.

2. The medium is q. perfect fluid, i e , any rigidity or shear effects

are neglected.

3, The effects of entropy- changes are negligible, i.e., that the

pressure is a function of the density alone (the medium is said to be

barotropic).

4. The total energy available for the motion is fixed.

The conservation laws for an element of material expressed in Lagrangean

form, i.e., along the particle paths, are as follows:



-6-

dp/dt = - p(a/r) - 2up/r = - (p/r2)6(r2u)/ r (3.1)

(mass)

du/dt - Ip/p r (mmentum) (3.2)

f(P,p) = 0 or df/dt - 0 (eq. of state) (3.3)

Thus if the medium were assumed to be polytropic with the adiabatic expon-

ent 7, we would have, for (3.3),

f(p,p) - pp'7 W const. - A (3.4)

These equations, in Elerian form, with subscripts denoting partial deriva-

tives, become

Pt + u Pr + Pur + 2up/r - 0 (mass) (3.5)

ut + UUr + Pr/P 0 (mentum) (3.6)

(pP' )t + u(pP'7 ) - 0 (state) (3.7)

The third of these equations is not quite equivalent to (3.), since it

only expresses the fact that the entropy is constant along the path of an

element, and does not imply its constancy throughout. This is a difference

from the case of plane waves; another difference from the equations of one-

dimensional flow is the additional term 2up/r occurring in (3.1) and (3.5),

which stands essentially for the spherical attenuation of the wave. This
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term of course is very important to the problem.

A complete geometrical description of the disturbance is afforded

by the construction of an r,t-diagram, as shown in Fig. 3. Here the solid

lines represent the motion of the points of a spherical surface, referred

to as a "particle". The most prominent feature in this diagram is a dis-

continuity, or shock front which propagates through the material at the

head of the disturbance. This curve, together with the cavity boundary,

defines a region (shaded in the figure) in which the solution to the system

of partial differential equations (3.5), (3.7) applies. Certain boundary

conditions, to be discussed later, must be satisfied. However, the diffi-

culty of the problem is that, unlike the conventional boundary value prob-

lems, here the boundary curves are themselves unknown, and must be found

as part of the problem. In fact, the determination of these two curves

are the most important part of the problem.

4. The Method of Progressing Waves

The idea of this and similar mathematical methods is to reduce the

partial differential equations to ordinary ones. This is accomplished by

assuming the specific form for the shock front curve and imbedding it in

a one-parameter family of curves. These curves are called "progressing

waves". For general details of the method, see [2] p. 419-433. The

method was used by R. G. Newton [ 4] to analyze blast shock problems.

Our "progressing wave" solutions are defined to be of the form,

u = to guwih r-a(1)

with = rt "

p = t5 D (g) (4.1b)

p/P = t6 g2 p (t) (4.lc)
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where a, e are parameters, and U, D, P functions to be deter-

mined. By introducing this variable t we have defined geometrically a

family of surfaces t = const. in the r,t-plane, which will play an im-

portant role in the analysis. Although these are not the trajectories of

the particles of the medium, we shall see that the shock front belongs to

this family of surfaces.

We now explore these solutions mathematically by substituting the

expressions (4.1) into the equations of motion (3.5)-(3.7), giving respect-

ively,

t l I u - a (tu' + U) + tp-a~l u(tu' + U) + t" 'a-P+l

+ PD'/+ P') 4.2a)

t [(u-) t D' + B D + ( U' + 3U)D] = 0 (4.2b)

t 5+E 1 Y. 72 P (5 D -atD') + t 2 [(b + ,)DP

- a(2DP + g D'P + g DP')] + t P+l[ - 71 2 PD'

+ t (2DP + t D'P + t DP')] t UJ. 0 (4.2c)

The sense in these equations is that it is possible to eliminate the explicit

factor t by properly choosing the exponents, thereby leaving a system of

functions of one independent variable t. This is accomplished by letting

6 . 2P ; P . a-i (4.3)
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so that t t 1 and we then have (after also

dividing by tt t , t + which are not zero for t > 0,

and some simplification,)

u- a (t U' + u) + u(t u' + U) + (2P + t PD'/D + I P') o (4.4a)

(u-a) t D' +8D+ (t u' +3u)D o (4.4b)

P' t(u - a) + P[2P - 5(y - 1) + 2(U - a)]-(D,/D)P t ( -)

(u-a) = 0 (4.4c)

We now have a system of ordinary differential equations for the unknown

functions U(Q), D(t), P(t) and two free parameters a and 5. The sub-

stitutions (4.1), which may appear artificial, are thus Justified.

We shall now reduce the number of variables further. Solving (4.4b)

for I D'/D gives

t D'/D = - (5 + t U' + 3u)/(u -a) (4.5)

When this is put into the remaining two equations we obtain the pair,

(u - ) (t U' + U) + 0 U + P (2 - (5 + t U' + 3U)/(U )]

+ t P' = 0 (4.6a)

-(7 - 1) (8+ U':+ 3U) - 21 + ( 7- 1) 8 - 2 (U - a) -

- (u -a) t P'/P -0 (4.6b)
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These equations, linear in U and P may be simultaneously solved,

giving

t U' [ [- U (U -a) (U - 1) + (5 + 20 + 3U 7)P]/ (4.7a)

t P' = P j(Y - 1)u(u -1) - (U -a)[(3Y - 1)u - 2] +

+¢2P - (y- a ) + 2y)P i/A (4.7b)
U a

where = (U -a) 2 _ P (4.7c)

The final step is to obtain by division of (4.7b) by (4.7a) the ordinary

differential equation

dPj P !LN(. .. jjj + I=-( )(.a

dU " R (U)+Ps(U) - (

where, after simplification,

N(U) = 7 UW a - 1 - 2U) + (3 -a) U -

Q(U). - :2p -(y -1) 5]/(U -<a)]. + 2y 4.b

R (u) - u(u -a) (1 - U)

S (U) - 5 + 2P + 3U7

This is the basic differential equation for progressing waves. After the

appropriate solution has been found for P = P(U), the function t = t(U)

is found by a quadrature of (4.7a) and the density function D(t), from

(4.5).
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These progressing wave solutions, as we shall 3ee, provide a sufficient-

ly general mathematical description of an expanding cavity reasonably consis-

tent with the given conditions of initiation of the process. There remains

the problem of-choosing the two parameters a and B. For this we have

two possibilities of an assumption:

(a) the motion is isentropic

(b) the motion is adiabatic, with constant total energy.

If (a) holds, then fra eqs. (3.4) and (4.1),

pp- 7 - (tce2 P) (t8D) - Y)- A

or t + (l7)5 2 .t 2 7) A

requiring, for independence of time, that

C+ (1 -7)b - 0. (4.9)

This condition is not, in general, satisfied by a sphe-ical wave. Instead,

we have the condition (b), that in, constant total energy. This is a reason-

able one for the cavity expansion process, because of its short duration,

provided certain secondary effects are neglected. With g = g, represent-

ing the shock front at a time t, the total energy in the fluid shell (poten-

tial + kinetic) at time t is given by

E(t)- f (_) 4,r 2 dr + f Pu2 4xr 2 dr (4.10)

r r
0 0

where ro 9 0t' is the inner radius of the shell (Fig. 1) and r1 1

ti is the location of the shock front.
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The first term arises from the polytropic relation p = Ap7 which

has been assumed for the material and the fact that the work done by the

material in becoming compressed from an initial volume V to a volumeo

V is given by

VE(v)- f pdV - PoVo A P P + cnst'7-1

V 0  PO (JP

where we have used the relation pV = p oVo  Using the substitutions in

(4.1) the energy expression becomes

r1

E(t) =(t 8+ e P 1 t + 2 )t2D(t)r'dr
E~t -&E7-1 2

r

Substituting r - gt , dr - t d , since t is constant,

z(t).I +5 + a 2  (- + 1  D(1)dl (U2.))

to

Since the integral is independent of t, we make the energy independent

of time by satisfying the relation

5+5a-2no or -2- 5a (.13)
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5. Boundary Conditions at Shock Front

We shall narrow down the number of parameters by examining the com-

patibility of our solution with the basic Rankine-Hugoniot conditions

across a shock front. If the undisturbed and disturbed medium parameters

are u0, PO' p0 and ul, Pl, p, respectively and the shock wave

velocity is C, then these relations are (See (2], p. 123-4),

PO (Uo 0 C) = Pl (U1 - C) = m (conservation of mass) (5.1a)

Pi U1 (ul - C) - Po uo (UO C) = Po - P1  (conservation (5.1b)
of momentum)

l(juI +E1) (uI  - ( u°  +ro (  - ) - o o
( lu ) - C) Po l2 0 , ) (uo - C) =p Ouo -

- Pl Ul (conservation of energy) (5.1c)

where E = - for a polytropic medium.

When the undisturbed state is a medium at rest, with uO = 0, these

reduce to

Pi (C - u1 ) - P0C - 0 (5.2a)

Pl Ul (C - ul) - (Pl - Po) = 0 (5.2)

P1 ( 1 ul + I Pl) (C-u 1 ) -p l ul = (Eo '0 )  (5.2c)

It is useful to have (5.2a) and (5-2b) solved for the velocities, giving

11 = (Pl - Po)/(Pc) (5.a)
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C_ 10 (5.3b)
=/01 -01 P 0

If p is in kilobars, p in gm/cc, then u and C will come out in

ia/sec by the following formulas:

Ul (p1 - PO)/ (10 P0 C) (5.4a)

C 1 (l 0 (5.4b)

It is useful to have these relations for a polytropic medium

/ 2I Pl Pl - PO

2, -l 1-0+ (5-5a)
71 p 1 p 0+

C 2 Pl Pl " Po1 5-b)
i -,+Po(

Pl

Fram (5.3), with p - I(-)/(i) , if Po is negligible,

u 1 c (1 -P 2 ) (56a)

P1  = poUC p Co c2 (l " 2) (5.6b)

o/Po = (7 + l)/(y - 1) = 1/2 (5. 6 c)

C== C/, -

The last quantity is conveniently referred to as the "sound speed" in

shock wave analysis.
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These relations apply just as well to a spherical or curved surface as to

a plane, since the effect of spherical divergence (the 2u/r term) on a

finite or sudden jump is of higher order. This may also be shown geomet-

rically by considering an infinitesimal surface element of the shock front.

Since tI = rt along the shock front,

0 = t-a dr - art-a-ldt

dr - l a-lso c = - = art = at From (4.1) and the relations (4.3) with

c - u1 = a lt'l-to Elli(El) = tlt  (a - U), we obtain

t D(a - ul -p 0aIt =0 (5.7a)

t52 0 t1
2DU (a - U) - t5+2P 1

2 DP = 0 (5.7b)

tb3P Dt 2 ( lU2 + -I- P) tl (a -u) -tb+3P El3 DPU = 0 (5.7c)

We note that the time factor cancels in (5.7b) and (5.7c), so that they

are'automatically satisfied, but to secure independence of.time in (5.7a),

it is necessary to make

5 a 0(5.7d)

With this condition, and the relations (4.3), the assumed form for the

progressing wave solutions reduce to
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r u( ) p = )(2)P( )
u = :FU)t)I(P

(5.8)
p.- D() R p P(o

P

with -= rt -

This solution shows that on the shock front or free surface, where t is

constant, the physical quantities such as velocity, pressure, density, and

wave velocity are constant on the rays r/t = constant. This also dimen-

sionalizes the functions (5,,8) correctly, for, with t having the dimen-

sions of'length per (time) , and

= [LT" ] D(t) = [ML "3 1 density

u(W, W l P(O. = Ill

then u, p, p, p/p come out correctly to have respectively the dimen-

sion of velocity, pressure (ML 1T-2 ), density, and velocity squared. The

complete set of exponents is now

a - 2/5 -6/5

(5.9)
A -- 3/5 0

Initial Conditions

Since =t i on the shock front, we have, just behind it,

U(l ) . (i - 2) 20/(7 + 1) (5.10a)

-l) = 2  (5.lob)

p( - a242 (1 - L2) _ 22/(7 + 1) (5.loc)
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with a = 2/5 or 1/4 according as the energy or momentum condition holds.

The right side of equations (,5.10) give us, for a specified material,

a definite point in the P-U plane, through which a single solution curve

is determined in general. We may refer to this point as our "initial point",

and proceed to draw the solution curve. Note that the constant El' still

undetermined, is not needed for this. We will discuss in Section 10 how

this constant may be determined.

6. Equation of State of Aluminum

In Fig. 4 is shown the relationship between pressure and relative

density for aluminum in the range between 100 and 400 kilobars. The three

numbered data points are taken from Ref. [3] as follows:

24 ST aluminum

P° = 2.785 free space density

c = 0.23 sp. heat at const. pressure
pS(). 690x1 6 '

P 3 P2  P1

Pressure (kb): 335.8 222.7 153.5

Rel. volume V/Vo: 0,7874 0.8333 0.8696

Shock wave velocity U : 7.531 6-927 6.500
(kM/sec)

Free surface velocity: 3.230 2.319 1.700
(ka/sec)

These points are plotted on loprithmic paper in Fig. 4, and a straight-

line fit through these points in possible, leading to the polytropic-type

relation
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p 7 = 52.7 100 kb< p <400 kb (6.1)

where p is in kilobars.

A few points are shown beyond the 400 kb range based on additional

data taken from [31. Here there is a slight but consistent departure from

the equation of state (6.1). However under the conditions of our explosion

the range of pressures do not exceed 400 lb.

Below about 100 kb we have a transition to elastic-plastic or elastic

behavior. The mattie of this transition is considerably uncertain. We may

also note that, unlike gses, the value of 7 is very high, i.e., relative-

ly small density changes occur under very high pressures.

The polytropic-type equation of state is a very convenient one to use

for metals provided the pressure range is restricted, such as in (6.1).

It has the advantage that the progressing wave procedure in eqs. (4.2)

can be carried through. However, such an equation of state must always

be modified at low pressures since the density of a solid does not tend

to zero with the pressure. Other equations of state have been used, e.g.

Sedov in [11], and Stanukovich [151, have used the formula

p - A [(/P%) 7- 1 (6.2)

For al inum, the values A a 187, 7 a 4.27, po M 2.7 provide a good

fit to the data points of Fig. 4.

Further discussion of equations of state for solids is given by

Huang [14].
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7. The Explosion Process

A physical description of the explosion process taking place in the

expanding inner cavity is naturally very important to our problem as this

provides the pressure forcing function required to expand the metal. Al-

though much is known about the unconfined explosion, the main difficulty

of our problem is that the gas is confined by the metal during the process.

Our knowledge of the effect of this confinement, at least for the explos-

ives used in the experimental study, is limited to empirical factors.

A condensed explosive such as "Pentolite" is converted, upon explosion,

into a gas at high temperature across a rapidly moving discontinuous front,

referred to as a detonation wave. Behind this front the chemical composi-

tion changes until a number of stable end-products are reached. The detona-

tion process in Pentolite has been analyzed ia detail by Shear (5), [6)

using the hydrodynamic theory of detonation, aid an equation of state

worked out giving the pressure-density relationship behind the detonation

front. This is shown in Fig. 5. It may be assumed that the gas expands

isentropically.

The detonation values for Pentolite are, from (6):

Loading density of solid: Po = 1.655 gm/cc

Initial explosion pressure: P1 = 231,.250 kilobars

Explosion temperature: T1 = 3367.70 K

Detonation velocity: D - 7807 m/sec

The equation of state curve of Fig. 5 is not fitted too well for the en-

tire range by a polytropic equation (straight line). However, over a

small part of the range of pressures, we may refer to the slope 7 as

the "local" adiabatic exponent. This varies from 7 = 3.29 at the front

down to 7 = 1,32.
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For rough approximate purposes the high value of y may be used for

pressures down to 100 kb.

These results are in very good agreement with experiments for uncon-

fined explosions, or explosions in air. However, there is still lacking

a detailed study of the interaction between the expanding gaseous products

of the explosive and the metal surface confining it. The expansion of

the gas is considerably complicated by the detonation wave reflecting off

the metal boundary, probably many times. Thus the loading pressure Pr

against the metal will be higher than the detonation pressures P behind
5

the front, as exhibited in Fig. 5. While the latter are accurately known,

the loading pressures are uncertain. Doring, in (10), p. 226, formula (4 ),

gives data of this type for other materials than Pentolite. With these

data as a guide an estimate of 26% increase in pressure due to confine-

ment is tentatively suggested, i.e.

P = 1.26Pr 8

Thus, for a detonation pressure of 231 kb,

P - 292 kb

The same reference also furnishes the value u - 1400 m/sec for the initial

particle velocity in aluminum.

In the early stages of the explosion process (up to approximately 2

microsec) the actual value may be substantially higher.

It may reasonably be assumed that this factor remains constant at

different pressures, so that the curve of Fig. 5 is Just shifted up a

constant amount. Until more detailed studies are available, this would be

the easiest way to extrapclate the confinement factor down to lower press-

ures.
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The analysis of the confinement problem requires % model for the den-

sity variation with radius of the exploding gas. Thus, the simplest model

would be a gas in equilibrium, and hence at uniform densi/ty. in the cavity.

as shown by curve (a), Fig- 6. Given the pressure-density relation, the

pressure against the metal would be easily calculated from the instantaneous

cavity radius R(t) according to the relation p = p0 (Ro/) 3 o A more

realistic distribution of non-uniform density is shown in (b), which puts

the maximum density and pressure at the interface. It assumes the detona-

tion front remains in contact with the interface and therefore the Hugoniot

relation of Fig,. 5 may be used, However, further assumptions are required

to relate the density to radius R(t:' or to the time t itself. The

third model (c), which is only sketched, is a further refinement in that

it accounts for the reflection of the detonation front off the interface.

The equilibrium model 'a) can only become &ccurate dring the latter

phase of the cavity exper.sion, after several reflections of the detonation

wave. Fig. 12 compares gas pressures on this model with that of the solid.

They are too low at first, and too high later. The critical time occurs

at 2.5 microseconds. The probably stA&te of affairs .s that the detonation

wave rmains in contact with the metsl for thue period of time and then re-

leases the pressure.

8. The P, U- Diagram

Using the condition cf constant erexgy, the 2/5-pcwer Law holds anl

the differential equation t4.8) for progressing oaves may be solved. This

was done numerically by means of Program I givea In the Appendix A family

of integral curves in the diagram are shown in Fla. . All of them Issie

from the singular point A enciosed in 8. rectangle or the diagram, and 'Which

is located by equating
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F(U, P) - 0 , G(UP) - 0

in (4.8). For our set of constants this point is

U = 0m0916 , P = 0.02884 (8.1)0 o

A more detailed analysis of the singular points is given in the Appendix.

The immediate neighborhood of this point is shown plotted in Fig. 8. It

can be seen that all the curves cne out. of this point along a common tan-

gent, and the point is labelled an "unstable nodal point" or simply, a

"source". The point U - 0, P = 0 is a stable nodal point, or "sink",

and the point

Po M 0 , U° =0 4

is a saddle point. (See Appendix C.) The solution curve for the physical

problem starts close to the source, then runs over very close to the saddle

point. There is a unique curve (marked C in Figs. 7 and 8) which actually

runs into the saddle, as shown in Appendix C. The accuracy of the compu-

tations is not sufficient to distinguish whether our solution actually co-

incides with C or not.

The "source" point itself represents physically an infinite shock

strength, as sketched in Fig. 9(b). Here the pressure and density just

behind the shock front are infinite (with a finite total impulse, however)

and the particle velocity is equal to the shock wave velocity. This type

of condition arises in stress-wave propagation problems as well., in the

form of a 8-function at the wave-front. See t161. It is a consequence

of the assumed instantaneous (i.e. step) loading of the material. With

such a loading we must start the propagation of either a zone of infinite

pressure if the velocity is finite, or our front must start out with an

infinite velocity.
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The end-point of t.he solution curve C at U = a, P = 0 provides

a very reasonable physical condition of asymptotic character. For, if we

consider any point A in the r,t-plane, Fig. 11, che "particles" must cross

the family of curves

r = a  (8.2)

(shown dotted) from left to right, since we have compression shock. Thus

the particle curve (solid) has a lower slope at A than that of the dotted

curve

r br

This condition is always satisfied since all the solution curves in the

U,P-plane coming out of the unstable nodal point lie to the left of the

vertical line U = 0.4. However, for the curve C u -4 0.4 r/t as

t -+ c, i.e. the particle curve is asymptotic to (8.2). The P = P(U)

curve, which end in U = 0, P = 0 give particle curves which cross all

the curves of (8.2).

9. The Radius-Time rt-Diagram

Figo. 10 and 11 show an r,t-diagram plotted for an initial cavity

radius of 1,698 cm, Pressures in kilobars are also shown on Fig. 10.

This figure gives much more detail of the early phase of the expansion

up to t = 2.5 microsec. from its start at t = 0.9 p sec. In this elaped

time of 1.6 4 sec the inner cavity has only grown to 1.86 cm, which is

only 13% of its ultimate change However, the pressure has already fallen

considerably. At the cavity surface it is down to 50 kb.

We also note that the shock velocity at point labelled P on the dia-

gram is equal to the known elastic wave velocity of the material. Beyond
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this point the 2/5-power law for the shock front starts to deviate from

this velocity. Such a condition represents a discrepancy of the progressing

wave method from this point on which is inevitable because of the equation

of state used.

Figs. 12, 13, and I4 show how the pressure, particle velocity and

density decay with time at the inner cavity surface. We note that p = po

occurs for t = 2.5 ± sec. Of course, we may not conclude that p becomes

less than the free space density because the equation of state (6.1) no

longer applies.
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10. Results

TABLE 1

Variation of physical quantities along
solution curve and cavity surface

T U P D E R(2 )

sec x 10-6  j#n/cc ergs x 1012  eft.

.8684 .09302 .02856 451.28M1  3.5182 -0.0 1.698

.9539 .09312 02854 438.45 3.4282 -.188 1o713
1.062 .09324 .02852 424.25 3.3,?8,? -.368 1730
1.186 .09337 .02844 410.10 3.2282 -.520 1.748
1.329 .09352 .02846 396.02 3.1282 -.648 1.767
1.495 .09369 .02843 381.99 3.0282 -.755 1.786
1.688 .09389 .02840 368.02 2.9282 -. 844 1.807
1.939 .09411 .02836 354.12 2 8282(3) -.918 1.828
2.181 .09436 .02832 340.29 2.7282\ ;  -.979 1.851
2.496 .09466 .02827 326.52 2.6282 -1.029 1.874
2.872 .09500 .02821 312.83 2.5282 -1.069 1.900
3.323 .09539 .02815 299.2194 2.4282 -1.101 1.926
3.868 .09586 .02807 285.69 2.3282 -1.127 1.954
4.533 .09641 .02799 272.24 2.22818 -1.148 1.984
5.350 .09707 .02789 258.89 2.1282 -1.164 2.016
6.364 .09787 .02777 245 * 63 2.0282 -1.176 2.050
7.636 .o9884 .o2764 232.48 1.9282 -1.186 2.087
9.252 .10003 .o2749 219.43 1.8282 -1.193 2.127
11.33 .10152 .02731 206.51 1.7282 -1.198 2.171
14.04 .10341 .02710 193.71 1.6282 -1.202 2.219
17.65 .10585 .02686 181.05 1.5282 -1.205 2.272
22.52 .109o4 .02659 168.55 1.42818 -1.207 2.332
29.28 .11331 .02628 156.21 1.3282 -1.209 2.401
38.91 .11914 .02593 .144.08 1.2282 -1.210 2.481
53.07 .12728 .02555 132.17 1.1282 -1.31 2.577
74.76 .13883 .02513 120.56 1.0282 -1.211 2.696
109.5 .15536 .02462 109.38 .9282 -1.212 2.849
168.3 .17866 .02384 98.85 .8282 -1.212 3.058
273.2 .21002 .02241 89.36 .7282 -1.212 3.355
470.8 .24867 .01974 81.30 .6282 -1.212 3.795
865.8 .29o68 .01550 .74.96 .5282 -1.212 4.465
1717 .32972 .01012 .70.40 .4.282 -1.212 5.514
3681 .35941 .00478 67.43 .3282 -1.212 6.968
7404 .37363 .00098 65.87 .2282 -1o212 9.257
8357 .36027 .00001 65.67 .1282 -1.212 9.687

(1) See below (3) Free-space density p = 0

(2) Cavity radius
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From eq. (4.5), it can be seen that the t-function admits of an

arbitrary multiplicative constant. This constant is determined from the

known required density of the material behind the shock front given by

the Rankine-Hugoniot conditions. This is given by (5.6c). From the

equation of state (6.1),

p = 3.5182

p - 384 kb

Then, from (5.1ob) and (5.o10c),

D - 3.5182 , P - .02856.

For an initial cavity radius of r - 1.698 cm, eq. (5.8) gives

1

t - r(DP/p) - 0.868 microseconds.

This is the value which must be used as the starting time of the cavity

motion in order to put the shock front at the given radius. We finally

must have

i rt- = (1.698) (.868 x 10"6) ",4= =l ) = 451.28.

11. Energy Considerations

In the theory of progressing waves, an assumption of constant energy

was made (see eq. (4.12) in order to provide the condition (4.13) for

determining a and with it, all the other exponents. The energy integral

(4.12) is extended between two points, one of which is located on the shock

front = const. - and a lower value t = too The integral path, such

as BC in Fig. 3, may be arbitrarily chosen, so long as it terminates on

these two curves.
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The energy in the disturbed part of the soid will, however, change

with time because Its lower borandary, the cavity surface, is not one of

the family of t-curves. Thus the energy values in Table 1 represent an

integration of the expression in (4,12) taken along the cavity surface

curve. If we extend this integration far enough (say to 100 microsec) so

that point D practically coincides with point C, the values in the table

become asymptotically constant, and we have

C B C D tl=- -f + f =-°+ f = f
A A B B to

From Table A we see tuat the energy does tend to a constant and we have

just shown that this limit is the value of the energy integral (4-12).

E = 1.212 x 1012 ergs (11o)

If we now suppose that all (or any known fractional part) of the

energy given up by the explosive is transmitted into the solid, then the

shock process could be terminated when the energy reaches the amount

available. It is not possible to determine a precise point of time be-

cause of the asymptotic way in which the energy increases. It is seen,

however, that E reaches .90% of its ultimate value in 3 microseconds,

which is a very short time compared with the expansion process.

The post-shock expansion presumably must take place under constant

energy conditions for a "long" period of time, until it is dissipated by

viscosity of the flow, elastic waves, and other side effects.

For energy ava:.ie.ble in the explosive, Shef.r L6 gives the value
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otal= 1.152 k cal/g

which, for our explosive weight of 0.07 ib, gives

ETotal = 1.26 x i012 ergs

Our calculated asymptotic value (11.1) from the progressing wave integration

comes to 96% of this. Thus we have here an independent camparison to check

the theory.

12. Sumry and Conclusions

In this paper we have attempted to study the cavity formation process

in the metal by determining how the important physical variables of cavity

radius, velocity, pressure, and density vary with time and position near

the cavity. The most prominent general feature of the whole process is the

short time of the "shock" regime as compared with the total time of the ex-

pansion. One general criterion of the end of the shock is when the super-

sonic velocity of the shock front drops to sonic, i.e., at the point P

of Fig. 10, where the slope attains the value for elastic disturbances in

the material. The progressing wave curve cannot be used beyong this point

since it would give a subsonic shock velocity. This situation has occurred

after 0.5 microsec.

We note that the highest pressures and densities in the metal are

located Just behind the shock front, and trail off with decreasing radius

to minimum values at the cavity boundary. We note that the equation of state

(6.1) which has been used for the calculations has a lower limit of p a

100 kb. This could also be used as a criterion for shock termination (point

D, Fig. 10). It is reached in 0.7 g sec. These conditions thus determine

a roughly parallelogram shaped region ODPE in the r,t-plane for the

validity of the progressing wave region. Note that the cavity has only
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expanded 0.,1 cm during this peridi, whic.h is 1/30 of the total observed

increase in radius. We are 'thus justified in referring to the shock process

as impulsive, i e.., -the later stages of -the prc.,ess are insensitive to many

features of the shock part,, Hence the progressing wave method of integra-

tion remains valid for the analysis of the shock zone.

The asymptotic characteristics of the progressing waves are thus not

of direct physical interest since they do not apply to the problem beyond

the region described above,. The expansion zone, headed by a wave travell-

ing with the dilatational wave velocity goes on for at least 100 seconds,

during most of which the metal continues to move by fluid or plastic flow.

The final cavity radius attained is of great interest to the general

problem as this value is directly observable on the specimens after blast.

In principle the prediction of this radius should afford a test of any

theory, but the matter ie not so direct as this, since several theories

are involved. It is now evident that the cavity formation process is zom-

plicated. It starts under one theory (in which the state of the metal is

fairly well established) but termnates in a different state of the mater-

ial, about which information Ls almost completely lacking Several mechan-

isms have been suggested for terminating the cavity expansion"

(1) An energy-level criterion

(2) A temperat-c:re criterion

(3) A yield-point criterion

Criteria such as (2) or (3) are tempting because they tend to provide

fairly definite marks s to when the material "freezes", either when & given

temperature, or a given pressure is reached. However, knowledge of mater.-

ials is still too incomplete to solve this problem. The total. energy of

the moving material stops increasing after the expansion phase has begun,
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so there is no change in energy,, Furthermore, any quantitative use of

energy balances would require careful accounting of all the energy loss-

es as well. A discussion of some of these energy questions was given in

the previous section.

Sumary

We smmarize 'by noting that the following four phenomena are coinci-

dent in time:

1. The shock-wave becomes sonic

2. The pressure at the cavity surface drops to less than 100 kb

3. The total energy in the disturbed material reaches 90% of its maxi-

mm and then levels off asymptotically.

4. The average gas pressure in the cavity (uniform model) equals

that in the metal.

All of these occur close to 2 microseconds after initiation of the ex-

plosion. This delineates a fairly definite time point of changeover of

conditions. Up to this time (t '= 2.5 microsec. for the conditions of

this report) we may say the effects of shock predominate. The progress-

ing vave method furnishes an accuarate theory for this regime. After this

time a relatively long expansion period occurs at constant energy until

ultimately terminated by degradation processes.
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APPENDIX - Numerical Pro ,

A. Calculation for the P Idlaram

The differentil equation ,4,8a) was solved numerically on the IM

7074 at The Pennsylvania State University using a FORTRAN program repro-

duced below. A list of the variables in the notation of this paper, to-

gether with their symbols on the program Is given in Table A- The method

used was first to parametrize the curves P = P(U) in terms of arc length

s, so as to avoid difficulties wnen the solation carves have vertical

tangents. Thus, the element of arc of the curve is given by

ds = v -,dP/d2 di (A.)

Substituting the expreesicn t35-68&) in tn.Ia we have

ds

dPsDN * PQ' dY (A,3)

/P2N +pQ 2  (JR + PS'

The square root in the denominator Is never zero except at the singular

points of the differential equation To cticulate the special curve

of Fig 7 efficiently advantage was taken of the fact that the sour.e poLnt

in the rectangle becomes a "sink" i e a stable node if the direction of

integration on ei.ch carve Ie reversed A:-.-.,rdingly,, a starting point B

was chosen near the saddle point ith the :oordinates

U = 0 3990 P ;0,oX2
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(using the known slope m - 0.2, see Appendix C, eq. (C.2) and the

program I was run with DS = - 0.001. The computed curve then ended very

accurately at the original source point.

B. R,T-diagram Program

This program is independent of the Program A, but actually incorpor-

ates the calculations of A within itself. It calculates the "particle

trajectories" directly from the initial conditions. It also calculates

the corresponding P(U) curve. For this program it was found best to

use the density D as independent variable, incremented at uniform steps.

This is because density is the most sensitive variable in the portion of

the curves of physical interest. (See Table 1).
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TABLE A - Program Symbol Table for PU-Diagram

Program Symbol Our Notation or Name Eq. Ref. Mode

A a FLT

B

C

G 7

U U

P P

DS ds

x t

D p

IMAX num. of iterations FIX

EP potential energy (8.3) FLT

EK kinetic energy (8.3) "

E E(t) (8.3) "

FN N(u) (3-8b) "

FQ Q(U) " "

FR R(U) of

FS S(U) "

FT P(N+PQ) (3.8a)

IV R+PS It

FX ds/y 2  (N+PQ)2 +(R+PS) 2  (A.2)

DP dP of

DU dU (A.3)

FY (U-a)2-7P (6.7c)

ME a (6.7a)

DD dp (6.5)

PD Pp

DEP (8.3)

DDK it
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TABLE B - Additional Symbols for R-T Diagram

(See also Table A)

Program Symbol
or Statement Our Notation or Name Eq. Ref. Mode

DO 00 FLT

R R It

St. 47 Initial U (.3a) "

St. 48 Initial P (11.3c) "

St. 54 Initial p (11.3b) "

EX 1/a I

T t

V u "

PRES p

IT dt
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C. Singular Points of the PU-Plane

The differential equation (3.8a)

dP P[N(U) + PQ(U)IdU R(U).+ PS(u7-

dP 0
is said to have a singular point whenever 3=- Using the expressions

(3.8b), this condition occurs if

(Sl) P =O, U= 0

(s2) P =o, U =a

(s3) P =0, U 1

and where

(S4) N ECRU) .
QU S(U)

This condition leads to the cubic equation

A3U+ A2 U2 + U + Ao

where

A3 - 27 (1- 37)

A2 - 37 2(3 a -1) + 7(7- 5) - 7(35+ e) + + a

A,- 7(3ab + 6CO - 213 - 4a) + (2 - a) (5 + 20)

A° - - (5+ 20)

For the particular numerical constants given by (5.9) and 7 = 7.6, the

point S4 is given by

P = o.02884 , u = o.o916

For the given constants and 7 = 7.6 for aluminum, the remaining roots

of the cubic are imaginary.
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Near any isolated singular point (Uo, Po) we may approximate the

differential equation by a linear fractional expression of the form

dP ax+by
du cx+dy

where x = U - Uo, y P - P0. See Stoker [13, p. 36-45, where tests

are given for determining the type of singular point. A suary of the

results is as follows:

Sing r Point Coefficients Classification

U0 =0 , P 0 0 a = O, b = - 2a Stable Node

c - - a, a= 20

U 0 aa, P = 0 (see below) Saddle Point

U0 -1.0, P = 0 a = 0, b = - + 27 Stable Node
oo a-l

c = a-l, d a 37 + 20

Uo * .0916, P0  .02884 Unstable Node

Since the point Uo a, Po 0 was of special importance (end-point of

the solution curve) it was examined directly. Near U = a we have

the power-series expansion,

P = Po0+ (dp'. (U - a) + .. (C.I)

Dividing both numerator and denominator in the differential equation (4.8)

by U - x and putting

m - P/(U - a) (C.2)

we my write
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dP [N(U) + m (2P + 27(U - a)] (c.3)
dU U(l - U) + (2f + 3U)m

We now inquire whether a solution curve can approach the point U a

with a definite limiting slope (i.e. be locally a straight-line). Letting

U -.a in (C.3) putting this expression in (C.1), and dividing by (U - a)

we obtain the equation for m:

a (a- 1)(7 -1) + 2P mm =m a(1 -a) + m(2p + 37a)

This has the following three solutions:

1) m=oo

2) m=O

3) m=(a-1)/3 for p=a-1

Thus thine are three solution curves which pass through the point. The

first two are the straight lines U = a and P - 0 respectively, which

are singular solutions to the differential equation. The remaining slope

is m = - 0.2 for a = 0.4. This is the limiting slope of the solution

curve of Fig. 7. In the same figure, all the solution curves between

and the horizontal line P = 0 end up at the origin, while those be-

tween Q and the vertical line U = a, go to infinity asymptotic to the

latter.
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COMPILE RUN FORTRAN
C BRL-PENN STATE PROJ BLAST WAVES
C P-U DIAGRAM PROGRAM
C DAVIDS-CALVIT

DIMENSION IDENT(8)
1 READ 800sAs8,CtGoIDENT

800 FORMAT14F1OoO98A5)
IFIA)2 .30.2

2 READ 801,UP9DS9X9DvIMAX
801 FORMAT(5F100,1O)
200 READ 8079EP*EKoE
807 FORMAT(3F10.O)

PRINT 8059IDENT
805 FORMAT(lHl#5X*31H8RL-PENN STATE PROJ BLAST WAVES,4X98A5)

PRINT 806
806 FORMAT(lHO,1HI ,8X,1HU,9X,1HP,9X,1HX,9XlHD,14X,2HEP*

113X92HEKv13X,1HE99Xs2HPDJ
3 DO 261=191MAX
4 FNuG*U*(3.O*A-1.O-2.O*U)+( 3.0-A)*U-2eO*A
5 F~u(2.0*B-(G-1.O) eC)/(U-A )+2.O*G
6 FR=U*(U-A)*l.Qo-U)
7 FSOC.2*0*B+3.0*U*G
8 FTnP*IFN+P*F02
9 FWaFR+P*FS

10 FX=DS/SORTF(FT*FT+FW*FW)
11 DP=FT*FX
12 DUuFW*Fx
13 FY=UW-A)*IU-A)-G*P
14 DXsX*FY*FX
15 DDo-D*IFW+39O*U*FY)*FX/(U-AI

PD=P*D
16 PRINT 8039IUPXDEPEK9E9PD

803 FORMATIl vN,13#4F10*593F15*791F1O*5)
17 UmU+DU
18 IF(U)27927919
19 PuP+DP
20 XnX+DX
21 DuD+DD
22 DEP84.0*3.141593*P*D*(X**4)*DX/(G-1 .0)
23 DEKu4o0*3.141593*(U*U)*D*EX**4)*DX/2.0
24 EP-EP+DEP
25 EK-EK+DEK
26 EwEP+EK
27 GO TO 1
30 STOP
31 END
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COMPILE RUN FORTRAN
C BRL-PENN STATE PROJ BLAST WAVES
C R-T CALCULATION PROGRAM
C DAVIDS-CALVIT

53 DIMENSION IDENT(6IJDENT(8
1 READ 8009A9BvCqG9DO9IDENT

800 FORMAT(5F1Qoa,6A5)
2 READ 809*X9R9DDIMAX9JDENT

809 FORMAT ( F1O00,2F10*091I1098A5)
43 IF(IMAX)3O,30944
44 PRINT 805

805 FORMAT(1H1,5X,31HBRL-PENN STATE PROJ BLAST WAVES)
45 PRINT 8109A9B9C9G9DO9IDENT

810 FORMAT C HO,5X,5Fl59595X,6A5)
46 PRINT 813*X9R9DD9IMAX9JDENT

813 FORMAT C HO,5X,3F15.5,I10.5X.8A5)
47 UnA*(1*0-cG-1*O/G+1.0n)
48 P-(A*A*(G-190)/(G+1.03)t*(1.0-(G-1.0IG+1.Ofl
54 D=(G+1 .0) /(G-1*0)*DO
49 EPuo
50 ETKw0
51 E-0
52 PRINT 806

806 FORMAT~lHO,1X91HI ,7X,1HT,11X*IHR,12X,1HV,11X,7HPRES KBe8X,1HD,11Xq
I1HUl1X,1HP, 11X91HX,12XIHEl

3 DO 260 lo1,IMAX
4 FNGU(9*-*020 +30A*U-2.o*A
5 FQU(2.0*B-(G-1 .0)*C)/(U-A)+2.0*G
6 FRUU*(U-A)*I1*0-U)
7 FSuC+2*0*B+3.*U*G
8 FT=P*IFN+P*FQ)
9 FW-FR+P*FS

13 FYnIU-A)*IU-Al-G*P
900 FX=-DD*(U-A)/iD*(FWt3oo*U*FY I
11 DPnFT*FX
12 DUsFW*FX
33 EXu1.O/A

330 T-(R/XI**EX
14 DX-X*FY*FX
34 V=R*U/T
37 PRES-(RT)**2*P*D*(100**(-9))

160 PRINT 808.I.TRtVtPRESoDtUgPtXE
808 FORMAT (1H ,13,1E12.4,1F12.7,1El4.5,1F14.5,4Fl2.5,1E15.5)
340 DTuDX/((-A/T+V/R)*X)
19 IF(P)27935935
35 T=T+DT
36 RxR+V*DT
17 UzU+DU
18 P-P+DP
20 XnX+DX
21 D-DDD
22 DEP=4.0*3.141593*P*D*(X'**A)DX/IG-1 .0I
23 DEK=4.0*3el4l593* (U*U).D*(X**4)*DX/2.0
24 EP-EP+0EP
25 EKaEK9IDEK
26 E-EP+EK

260 CONTINUE
27 GO TO 2
30 STOP
31 END
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